
Math 115A - Spring 2019

Practice Exam 1 - Solutions

Full Name:

UID:

Instructions:

• Read each problem carefully.

• Show all work clearly and circle or box your final answer where
appropriate.

• Justify your answers. A correct final answer without valid reasoning
will not receive credit.

• All work including proofs should be well organized and clearly
written using complete sentences.

• You may use the provided scratch paper, however this work will
not be graded unless very clearly indicated there and in the exam.

• Calculators are not allowed but you may have a 3× 5 inch notecard.

Page Points Score

1 10

2 15

3 10

4 10

Total: 45
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1. (10 points) True or False: Prove or disprove the following statements.

(a) If U1, U2, and W are subspaces of a finite-dimensional vector space V such that
U1 +W = U2 +W , then U1 = U2.

(b) Fix an n × n matrix B and let W = {A ∈ Mn×n(F) | AB = BA}. Then W is a
subspace of Mn×n(F).

Solution:

(a) False.

Take V = R2 and let U1 = span{(1, 0)}, U2 = span{(0, 1)} andW = span{(1, 1)}.
Then U1 +W = U2 +W = R2 but U1 6= U2.

(b) True.

Proof. To show that W is a subspace we need to check that W is closed under
addition and scalar multiplication, and that W contains the zero vector. Fix B
and let M and N be matrices in W so that MB = BM and NB = BN . Then

(M +N)B = MB +NB = BM +BN = B(M +N)

so M +N ∈ W . Let λ ∈ F. Then λM ∈ W since

(λM)B = λ(MB) = λ(BM) = B(λM).

Finally, in Mn×n(F) the zero vector is the zero matrix and 0B = 0 = B0 so
0 ∈ W . Thus W is a subspace of Mn×n(F).
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2. (15 points) True or False: Prove or disprove the following statements.

(a) The set W = {(a, b, c) ∈ R3 | a2 + b2 + c2 = 0} is a subspace of R3.

(b) The set W = {(a, b, c) ∈ R3 | a+ b+ c = 0} is a subspace of R3.

(c) There exists a linear transformation T : F5 → F2 with

kerT = {(a, b, c, d, e) ∈ F5 | a = b and c = d = e}.

Solution:

(a) True.

Proof. Let a, b, c ∈ R with a2 + b2 + c2 = 0. Since a2, b2, c2 ≥ 0, it must be that
a = b = c = 0. So W = {0}, which is subspace.

(b) True.

Proof. In order to show W is a subspace we check that W is closed under
addition and scalar multiplication, and contains the zero vector. Given two
arbtirary elements of W , say (a, b, c) and (ā, b̄, c̄), so that a + b + c = 0 and
ā+ b̄+ c̄ = 0, we want to show their sum is in W . We compute

(a, b, c) + (ā, b̄, c̄) = (a+ ā, b+ b̄, c+ c̄).

The sum is in W since

(a+ ā) + (b+ b̄) + (c+ c̄) = (a+ b+ c) + (ā+ b̄+ c̄) = 0 + 0 = 0.

So W is closed under addition. Now for scalar multiplication, given λ ∈ R we
need that λ(a, b, c) ∈ W . This follows because

λ(a, b, c) = (λa, λb, λc)

and
λa+ λb+ λc = λ(a+ b+ c) = λ0 = 0.

Last, we check that (0, 0, 0) ∈ W , but of course 0 + 0 + 0 = 0. Thus W is a
subspace of R3.

(c) False.

By the Rank-Nullity Theorem, dim(kerT ) + dim(imT ) = dimF5 = 5. But we
see that dim(kerT ) has dimension 2 since {(1, 1, 0, 0, 0), (0, 0, 1, 1, 1)} gives a
basis for kerT . This implies that dim(imT ) = 3. But imT is a subspace of F2

so dim(imT ) ≤ 2, a contradiction.
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3. (10 points) True or False: Prove or disprove the following statements.

(a) Let S = {(1,−1, 0), (0, 1,−1), (1, 1, 1)} ⊆ R3. The list S is a basis for R3.

(b) Let B = {(1,−1, 0), (0, 1,−1), (1, 1, 1)} ⊆ (F2)
3. The list B is a basis for (F2)

3.

Solution:

(a) True.

Proof. Since the dimension of R3 is 3 and S has 3 elements, it suffices to prove
either that S is linearly independent or that spanS = R3, because one will
imply the other. We will prove that S is linearly independent. Consider a linear
combination

a(1,−1, 0) + b(0, 1,−1) + c(1, 1, 1) = (a+ c,−a+ b+ c,−b+ c) = 0

with scalars a, b, c ∈ R. This gives a system of linear equations

a+ c = 0

−a+ b+ c = 0

−b+ c = 0.

We will show that a = b = c = 0. Adding b to both sides of the last equation
gives b = c. So the first two equations become

a+ b = 0

−a+ 2b = 0

Adding a to both sides of the second equation now gives a = 2b. But then the
first equation becomes 3b = 0. Hence b = 0 and then also c = 0 and a = 0. Thus
there are no nontrivial linear combinations of zero and S is linearly independent.
Since R3 has dimension 3, this shows S is a basis for R3.

(b) True.

Proof. We have seen that sometimes a basis for R3 is not a basis for (F2)
3.

However, in this case the same argument as above holds (though we can now
ignore the minus signs), because 3 = 1 ∈ F2. In fact the argument could be
shorter, because once we have a = 2b, we know a = 0 since 2 = 0 ∈ F2. But
then a = b = c = 0 and B is linearly independent. Since F3 has dimension 3
and B contains 3 linearly independent vectors, B also spans. Hence B is a basis
for (F2)

3.
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4. (10 points) True or False: Let W1 and W2 be subspaces of a vector space V over a field
F. Prove or disprove the following sets are subspaces of V .

(a) The intersection of W1 and W2, given by

W1 ∩W2 = {v ∈ V | v ∈ W1 and v ∈ W2}.

(b) The difference of W1 from W2, given by

W2 −W1 = {v ∈ V | v ∈ W2 and v /∈ W1}.

Solution:

(a) True.

Proof. We need to show that W1 ∩ W2 is closed under addition and scalar
multiplication, and that it contains 0 ∈ V . All of these follow from the fact
that W1 and W2 are subspaces of V .

Let u, v ∈ W1∩W2. Then u, v ∈ W1 and also u, v ∈ W2. Since W1 is a subspace,
it is closed under addition and u+v ∈ W1. The same is true for W2, so u+v ∈ W2

and hence u+v ∈ W1∩W2. Suppose λ ∈ F. Again, λv ∈ W1 and λv ∈ W2 since
W1 and W2 are closed under scalar multiplication. So λv ∈ W1 ∩W2. Finally,
0 ∈ W1 and 0 ∈ W2 since all subspaces of V contain 0 ∈ V , so 0 ∈ W1∩W2.

(b) False.

For example, take V = W2 and W1 = {0}. Then in particular, 0 /∈ W2 −W1 so
W2 −W1 cannot be a subspace.
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