Math 115A - Spring 2019 Exam 2

Full Name:				
UID:				

Instructions:

- Read each problem carefully.
- Show all work clearly and circle or box your final answer where appropriate.
- Justify your answers. A correct final answer without valid reasoning will not receive credit.
- All work including proofs should be well organized and clearly written using complete sentences.
- You may use the provided scratch paper, however this work will not be graded unless very clearly indicated there and in the exam.
- \bullet Calculators are not allowed but you may have a 3 \times 5 inch notecard.

Page	Points	Score
1	10	
2	10	
3	10	
4	10	
Total:	40	

THIS PAGE LEFT INTENTIONALLY BLANK

You may use this page for scratch work. Work found on this page will not be graded unless clearly indicated here and in the exam.

THIS PAGE LEFT INTENTIONALLY BLANK

You may use this page for scratch work. Work found on this page will not be graded unless clearly indicated here and in the exam.

- 1. (10 points) True or False: Prove or disprove the following statements.
 - (a) Let $T:V\to V$ be a linear operator on a finite-dimensional vector space over a field \mathbb{F} . Let v and w be two eigenvectors of T with eigenvalue $\lambda\in\mathbb{F}$. Then any nonzero linear combination of v and w is also an eigenvector of T.
 - (b) Let $S, T: V \to V$ be linear operators on a finite-dimensional vector space. Assume that S and T commute, i.e. that ST = TS. If T is injective then S is injective.

Page 1 /10

- 2. (10 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation given by reflection about the line y = 2x.
 - (a) Give a basis for \mathbb{R}^2 consisting of eigenvectors for T and find their corresponding eigenvalues.
 - (b) Is there a basis γ for \mathbb{R}^2 such that $[T]^{\gamma}_{\gamma}$ is the following matrix?

$$[T]_{\gamma}^{\gamma} = \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix}$$

If so, find the basis γ . If not, justify why no such basis exists.

- 3. (10 points) Let $A, B \in M_{n \times n}(\mathbb{F})$ and let $\operatorname{tr}(A) = \sum_{i=1}^{n} A_{ii}$ be the trace of A.
 - (a) Show that if A and B are similar then tr(A) = tr(B).
 - (b) Show that if $A^k = 0$ for some $k \ge 1$ then the determinant $\det(A) = 0$.

Page 3 /10

4. (10 points) Let $V = M_{2\times 2}(\mathbb{R})$ and $W = P_3(\mathbb{R})$. Let

$$\beta = \left\{ w_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, w_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, w_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, w_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \text{ and }$$

$$\gamma = \left\{ 1, x, x^2, x^3 \right\}$$

be the standard bases. Consider the linear map $T: V \to W$ defined by

$$T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a-c)x^3 + (a+c-2b+2d)x^2 + 3(c+d)x + 2(c+d).$$

- (a) Find $[T]^{\gamma}_{\beta}$.
- (b) Prove that although $V \cong W$, the map T is not an isomorphism. (*Hint:* The proof that $V \cong W$ should be one line.)

Page 4 /10