Read Section 5.4 and answer the following. Your answers should be complete sentences but they may be brief. You are not expected to provide a complete proof unless the directions say something like "show" or "prove." Often, you may just cite a relevant theorem from the text.

- 1. Give an example of a linear operator $T: V \to V$ and subspace that is not T-invariant.
- 2. Show that for any linear operator $T: V \to V$ the eigenspace $E_{\lambda} = \ker(T \lambda I)$ is a *T*-invariant subspace.
- 3. Suppose $p_T(x)$ is the characteristic polynomial of $T: V \to V$. What is the value of $p_T(T)$?
- 4. Let $T: V \to V$ be a linear operator and $V = W_1 \oplus W_2$ where $W_1, W_2 \subseteq V$ are both *T*-invariant subspaces. Suppose the characteristic polynomials for the restrictions T_{W_1} and T_{W_2} are f(x) and g(x). What is the characteristic polynomial for *T*?