1. Find the point at which the line $\mathbf{r}(t) = \langle 2-t, 1+3t, 4t \rangle$ intersects the plane 2x-y+z=2.

2. Find an equation of the plane that is perpendicular to the plane x + y - 2z = 1 and contains the line of intersection of the two planes x - z = 1 and y + 2z = 3.

3. Parametrize the intersection of the surfaces $x^2 + y^2 = 9$ and z = xy using a single parametrization.

4. Two particles travel along the space curves $\mathbf{r}(t) = \langle t, t^2, t^3 \rangle$ and $\mathbf{q}(t) = \langle 1 + 2t, 1 + 6t, 1 + 14t \rangle$. Do the particles collide? Do their paths intersect?

5. Sketch the curve with the vector equation $\mathbf{r}(t) = \langle t, \sin(2t), \cos(2t) \rangle$. Draw an arrow to indicate the direction a particle with this parametrization would travel.

6. Find parametric equations for the tangent line to the helix $\mathbf{r}(t) = \langle 2\cos t, \sin t, t \rangle$ at the point $(0, 1, \pi/2)$.

7. Choose the picture that each equation describes.

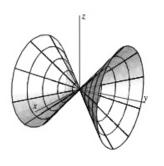
(a)
$$z = \cos(x - y)$$

(a)
$$z = \cos(x - y)$$
 _____ (b) $x^2 - y - z^2 = 0$ _____ (c) $x^2 - y + z^2 = 1$ _____

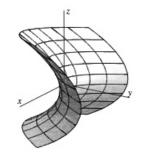
(c)
$$x^2 - y + z^2 = 1$$

(d)
$$x^2 - y^2 + z^2 = 0$$

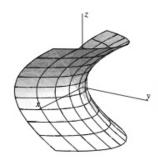
(d)
$$x^2 - y^2 + z^2 = 0$$
 _____ (e) $x^2 - y^2 + z^2 = -1$ ____



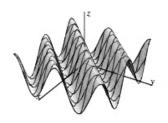
(A)



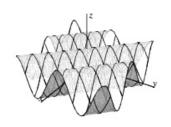
(B)



(C)

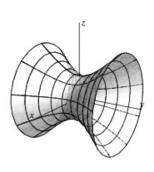


(D)

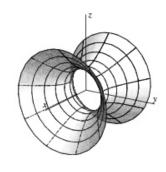


(E)

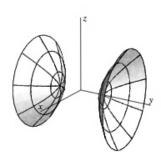
(F)



(G)



(H)



(I)