1. Match each double integral in polar coordinates with the graph of the region of integration.

(a)
$$\int_3^4 \int_{3\pi/4}^{7\pi/4} f(r,\theta) r \, d\theta \, dr$$

(b)
$$\int_{3\pi/2}^{2\pi} \int_0^4 f(r,\theta) r \, dr \, d\theta$$

(c)
$$\int_0^3 \int_{-\pi/2}^{3\pi/4} f(r,\theta) r \, d\theta \, dr$$

(d)
$$\int_{3\pi/4}^{3\pi/2} \int_0^3 f(r,\theta) r \, dr \, d\theta$$

(e)
$$\int_0^{2\pi} \int_3^4 f(r,\theta) \, r \, dr \, d\theta$$

(f)
$$\int_{-\pi/4}^{3\pi/4} \int_{3}^{4} f(r,\theta) r dr d\theta$$

(A)

(B)

(D)

(E)

3. Use a double integral to find the area of one loop of the rose $r = 2\cos(3\theta)$.

4. We can define an improper integral over the entire plane \mathbb{R}^2 in several equivalent ways. If D_a is the disk of radius a centered at the origin and S_a is the square with vertices $(\pm a, \pm a)$ then

$$\iint_{\mathbb{R}^2} f(x,y) \, dA = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \, dy \, dx = \lim_{a \to \infty} \iint_{D_a} f(x,y) \, dA = \lim_{a \to \infty} \iint_{S_a} f(x,y) \, dA.$$

We will use this to compute

$$\int_{-\infty}^{\infty} e^{-x^2/2} \, dx = \sqrt{2\pi},$$

an important integral for probability and statistics.

- (a) Consider the solid under the graph of $z = e^{-x^2 y^2}$ above the disk D_a . Set up a double integral to find the volume of the solid.
- (b) Evaluate the integral above and find the volume. Your answer will be in terms of a.
- (c) What does the volume approach as $a \to \infty$?
- (d) Now use the volume in part (c) and the interpretation of the improper integral involving S_a to find

$$\left(\int_{-\infty}^{\infty} e^{-x^2} \, dx\right)^2$$

and then take the square root.

(e) Finally, making the change of variable $t = \sqrt{2}x$, show that

$$\int_{-\infty}^{\infty} e^{-x^2/2} \, dx = \sqrt{2\pi}.$$